Category: Tubular Bells & Chimes

1″ Chimes (Job No: 1301)

I have made a new frame for a set of 1″ chimes, so it made sense to extend the playing range up to the top G at this juncture.  The frame has already been delivered, so now I have the time to make the bells.

wpid-wp-1443679691119.jpg

The first thing I need is an example bell, in this case I asked for the F.  Not only does this enable me to take all the measurements that I need in order to make any parts, but it also helps during the tuning process so that the new bells fit within the existing set.

It is now virtually impossible to get brass tube in the size that I want, let alone the correct material.  Brass is an alloy, so there are lots recipes to get the required properties for the desired application.  Over time, brass is being replaced (presumably by plastic) so the commercial requirement for these mixes has largely disappeared.  Combined with the mills being bought out during global monopolization, this has resulted in higher prices and less choice.  Of course, if I buy sufficient quantity (a metric tonne) I can get whatever I want, but I am instrument maker – I make musical instruments for a living therefore I am poor; spending thousands of pounds sterling on lengths of brass tube is just not going to happen.  Additionally I would need four external diameters, and three wall thicknesses, that is twelve tons of brass tube!  If I had that kind of money, I would retire to the Caribbean.

Fortunately I do have some stock, which still equates to well over a thousand pounds just sitting on a shelf!  In amongst those tubes I did indeed have a length of the correct material, which is the major hurdle negotiated.  So the first job is to chop it into lengths longer than the bells I need to make.  There is nothing worse than making a bell only to find that it is too sharp right at the end of the process when the tuning happens.  With the two new tubes cut, I drill the holes for the string to match the existing bell and stamp the tubes.

wpid-wp-1443681021832.jpg

Using the existing bell as a reference, I measure the cap dimensions so that I can form the inside of the cap from solid bar. This form is then cut off the bar giving me two crude caps. I use a donor bit of tube offcut as a temporary bell and spot solder the caps in place. This enables me to hold the offcut tube in the lathe to form the external shape. My lathe doesn’t have a large enough bore to pass the tube through its headstock.

wpid-wp-1443682034967.jpg

With the caps now made, it is just a matter of removing them from the donor tubes and soldering them in place on the actual tubes. After they have cooled, I hand polish the whole bell, then tune it and send it off to be chrome plated if required.

wpid-wp-1443682465113.jpg

Premier Tubular bells (Job No: 1277)

Moving parts by their very nature will always cause problems, especially so if they are not regularly serviced or designed and made badly.  This is the case with these Premier tubular bells.  In defence of the customer, there isn’t actually anything they could have done in particular to have prevented the noise produced from the damping system.



As seen clearly the noise problem in this tubular bell damping system arose mainly from the choice of materials; the wooden dowel. In defence of Premier they have economic constraints; everyone wants to spend as little as possible on musical instruments, so for Premier, and indeed any manufacturer, they have to shave off costs at every opportunity.  Wooden dowels are cheaper than ptfe rod, so wooden dowels are used; spending time to minutely check every component takes time which in turn increases production costs.  There is a solution however; the customer has to pay more – simple.  Whether initially they pay more to have a proper instrument made, or they pay more to have a cheaper instrument re-engineered, either way the only answer I see is the musician paying more money.  Ultimately you get what you pay for.

It could be worse however, and I have seen worse systems, at least I could work with what I had to silence the problems.  Other than the damping system, there were creaks that originated from the frame in general, these were removed by re-assembling the frame with a care and the usual attention to details.

Bell Frame (part two) (Job No: 1241)

The beginning of this post is 1241: Bell Frame (pt 1) which covers most of the work that was done.  Whilst the metal work was away being powder coated, the board was finished and varnished.  What I end up with, is a whole pile of bits to be reassembled on various instruments.

I was asked about the strength of the hinge and the boards flexing under body weight in a comment on (part one).  The main bar around which the whole step rotates supports the front edge of the forward board, and there is a steel brace to support the outer edge of that forward step.

wpid-wp-1421916009034.jpeg

The new extension board has braces running across the width of the board both fore and aft.  These braces also provide the pivot points around which the legs rotate.

wpid-wp-1421916294917.jpeg

Below is a short video showing how it all works.



Bell Frame (part one) (Job No: 1241)

This is a height adjustable bell frame with an integral step that I made a couple of years ago. The concept was brought to me by a musician for me to design and realise. It has come back to have a modification made.

wpid-wp-1421048932831.jpeg

The problem is the depth of the step; the playing position is too close to the bells. The only practical solution is for me to replace the solid board with two halves that open out like a book.

Now that I am satisfied that it will work, and more importantly, will solve the problem, I need to make some legs. Unfortunately I will need four legs so that it is a free standing unit; I don’t like the idea of standing on something with two legs and relying on the hinges to hold the other end.

wpid-wp-1421049145666.jpeg
Above shows the four legs made, and work has begun on the diagonal braces.

wpid-wp-1421049535003.jpeg

The new step made and tested – I jump on it as hard as I can.

wpid-wp-1421049652174.jpeg

Like all of my frames, I make them as simple to use as possible. One wing screw needs to be undone to fold the legs in.

wpid-wp-1421049749439.jpeg

The same wing screw now goes back, and holds the whole assembly in place for transportation.

The story continues in 1241: Bell Frame (pt 2)

1.1/2″ Tubular Bell (part 2) (Job No: 1206)

The first part of this post is 1206: 1.1/2″ Tubular bell (part 1)

In the first part of this post, which is the first day of work on the instrument, I made the cap, and the tube, and joined the parts together.  On the second day, which gives everything 24 hours to settle down, I tune the bell.

Tuning is a simple job of gradually shortening the length of the tube to raise the tone to the desired pitch.  When they are made in mass production, all the tubes are cut to standard lengths then chrome plated.  This is why they are never in tune, even the fundamental (the overall length) is at the wrong pitch.  Obviously my standards are a lot higher, and the fundamental is bang on the correct pitch, what I find out in the tuning process is whether my tweaks to the design have worked.  In this case I was delighted.

There are two main tones in a tubular bell: the fundamental and the strike tone.  The strike tone is the “clang” when the bell is hit, and it is this pitch that is hard to get correct.  On this bell I was within 20 cents of a perfect octave, which means I might have cracked the problem.  I have to replicate the bell now, and then work out the solution for the other 19 bells!

Once tuning is complete, I just clean the bell so it is shiny.

wpid-wp-1418977728091.jpeg

1″ Chime Frame (Job No: 1224)

Many, many years ago, just after leaving college and whilst working for Impact Percussion, I made a couple of their frames for 1″ chimes.

wpid-wp-1418464753435.jpeg

I have been asked to make something similar.  This is a good opportunity for me to revisit the whole concept, and make it how it should have been made in the first instance.

There are fundamental design issues that are easy to address, and repairs that I have had to make to the other frame’s components that I can just make properly in the first instance.  However there is one issue that really needs to dramatically change.

wpid-wp-1418465570495.jpeg

The way the bells hang over the bar makes them difficult to play without hitting the bar.  Pretty obvious really, another example of a schoolboy error, and an example of just why I had to set up by myself all those years ago.  When working for a boss, they have to be pleased first, before the customer.  Working for myself, besides my own job satisfaction, ultimately it is my customers who have to pleased.

So, the first stage is to get drawing to see how much room I have to play with, then make a mock up to see if my ideas work.

wpid-wp-1418466303733.jpeg

On my larger frames, where I have more room between bells, I used replaceable bell hangers because they are prone to be damaged and are difficult (therefore expensive) to repair.  The gap between the bells are too narrow on this frame, so I am having to use the more traditional hook.  These hooks enable the bells to sit higher than the bar to solve the main complaint.

There are differences to my approach however.  Everyone else goes down the path of least resistance, and just uses a flat bit of metal to mount the hooks on.  The problem is that they bend very easily, which causes all sorts of problems.  I have used right angled metal to give rigidity in both planes, however due to the space restrictions I have scalloped out a section around the bell.

Now I know the design will work, I can start making all the components.

wpid-wp-1418466999841.jpeg

1.1/2″ Tubular Bell (part 1) (Job No: 1206)

Tubular bells, like most percussion instruments are simplicity themselves; they are just a tube of brass normally reinforced at the top with a cap.  However, like most percussion instruments, they are little understood, and the simplicity of design belies the challenges faced by an instrument maker to deliver a good sounding instrument.  If it’s just a tube with a lid, how will I know whether it will sound good, and what can I do if it sounds rubbish?

I have yet to be convinced by any claims that manufacturers make in marketing about their ‘fantastic tubular bells.  What they fail to publish, are reasoned arguments, supported by research and data.  However they are not writing publications for me to read, they are writing to sell instruments to musicians who go on to accept their statements as fact [suckers!?]

So what is the solution?  Research.  Everything I do, I document; it is from this accumulation of data and observations that I gain a deeper understanding of all the instruments I work on.  Furthermore, it provides the platform from which hypothetical improvements are made and subsequently tested.  By improvements I mean manipulating an instrument to improve its musical timbre.

To make a set of tubular bells by mass production, a saw to cut the tube to a predetermined length is needed, and a drilling machine to drill the holes in a set position.  There may or may not be a secondary tube for the cordage to pass through.  To make the caps, a computer operated lathe will be used.  The caps are then pushed into the tube using pneumatic rams.  Polish and chrome; job done.  One musical instrument made!

My method of making tubular bells is very similar.  Starting with a suitable length of stock tube and referencing my accumulated data, the tube is cut a little longer than the longest bell of that pitch that I have ever seen.  Why?

The first reason is that no two lengths of brass are identical.  The assumption that materials are completely uniform is a fundamental flaw in the concept of mass produced musical instruments.

The second reason is to accumulate more data.  Because I can only get two, possibly three bells out of a length of tube anyway, I cut them as long as possible.  The result for me is two or three times more data is acquired as I raise the bell to pitch by shortening the tube.  The extra length also provides opportunities to experiment and still be able to make a bell at the correct pitch.

Now I have an oversized tube I clean up one end clean up one end.  This has to be done by hand, because I don’t have the room for a lathe big enough to take a tubular bell (unsurprisingly), so it takes a me a lot longer versus factory.
wpid-wp-1414919148007.jpeg

Next I have to set the drill up so that I can cut the holes for the note cord.  Just setting the drill correctly takes time, which is why making one bell is always more expensive than several.
wpid-wp-1414919214658.jpeg

After I have the holes drilled, I remove all the sharp edges, making them rounded in cross section.  This prevents the metal from slicing through the cord.  It is this attention to detail that takes me time, but saves my customers time and frustration.
wpid-wp-1414919292976.jpeg

Before the cap goes in, I stamp the tube with the pitch of the bell rather than the cap which is the playing surface.  In several instances, my customers accumulate a complete set of bells over many years, and I want to give them consistency of design, so I have a little pattern to get all the stamps in the right place.

What I never get is perfection.  It’s bloody hard to get the stamp perfect, I used to get moaned at by my boss when I worked at a shop for wonky letters.  Over a decade later, I still find it impossibly difficult and it still upsets me when they are not right, but I’m better at living with the disappointment and view it as a mark of humanity as opposed to the machine.
wpid-wp-1414836847293.jpeg

Now the tube is done, I make the cap.  This is turned in the lathe.
wpid-wp-1414836997655.jpeg

In the photo, I am checking the angle at which the chamfer is cut.

The cap is made to a sliding fit into the tube.  The cap is solid brass, if it has to be forced into the tube it is the tube that will expand.  This expansion of the tube creates internal stresses and makes the brass less ductile, and it is the reason why the tubes split at that point.  In my view this is another indication of the embarrassing lack of knowledge displayed by the major manufacturers!

The cap is then bonded into the tube, I paint the letter stamp, and everything is left to settle prior to tuning.
wpid-wp-1414920138717.jpeg

This blog post continues in 1206: 1.1/2″ Tubular bell (part 2)

1″ Chimes (Job No: 1063)

I think these are Viscount chimes, in for repair. The damper pedal doesn’t work, and there are missing parts; also one of the bells is missing a cap, and the whole frame needs a bit of TLC.
20120831-113319-AM.jpg 20120831-113328-AM.jpg

The first thing I ask when I receive a broken instrument is, why did it break? In this case, it looks likely that the missing part snapped, but why? Probably because the design wasn’t that good to begin with, and that the force needed to damp the bells was too great for the aluminium that the part would have been made from.
Therefore, I need to re-design the part, and look at the damper bars to improve their effectiveness, and subsequently reduce the force needed at the foot pedal.
20120831-114455-AM.jpg

This is the new part I am making

20120831-115732-AM.jpg

New component made, now it moves in two directions; forward and back, left to right to ensure that the tension force is all inline and there is no twisting. Part made from steel for strength.

20120831-010140-PM.jpg

Measurements of the bell cap taken off a complete bell and a copy made:

20120914-095750-PM.jpg

The bell is keyed to both provide a clean surface and give the solder a surface to stick to:

20120914-100113-PM.jpg

The cap can now be soldered in.

1″ Chimes (Job No: 1026)

20120827-121903-PM.jpg

I have been commissioned to make a set of replica 1″ Chimes to replace a set that has been damaged.
Having taken delivery of a load of brass tube and solid round, I need to cut the tubes oversize to clear the workshop floor & prevent the tubes from being damaged.
Once the tubes have been cut and de-burred the hanging holes are drilled. The holes are then chamfered and filed to remove any sharp edges.
20121017-082252-PM.jpg

The caps made next, turned to a sliding fit:
20121017-082655-PM.jpg

Then cut to length, and the edges cut to a 2mm radius to match the bells I’m replicating.
20121017-083042-PM.jpg

The caps and tubes are soldered in, cleaned up ready to be polished and chrome plated.

20121017-083432-PM.jpg

Frame Repair
The frame has two issues; the damper mechanism has broken, and a leg is bent
20121018-022652-PM.jpg

The two pins that make the fulcrum for the damper bar were held in with two tiny pins.
20121018-023006-PM.jpg

Due to the fact that both are missing, the design is flawed. I will replace them with turned bolts that can be thread locked and tightened hard into the frame.